Enhanced Global Best Particle Swarm Classification
نویسندگان
چکیده
Particle Swarm Classification (PSC) is a derivative of Particle Swarm Optimization (PSO) based on the retrieval of the best particle positions corresponding to the centroids of classes. This paper addresses how the position update mechanisms impacts the accuracy of a global best PSC approach. The authors present two variants of the PSC algorithm with different position update mechanisms. In particular, the authors show how the combination of a good parameters tuning, a particle confinement to the search space and a biologically inspired wind dispersion mechanism for them improves the covering quality of search space and thus the classification accuracy of the basic global PSC algorithm. An experimental set up was realized and tested on five benchmark databases, leading to better recognition accuracies than those obtained with the previous PSC algorithm. Enhanced Global Best Particle Swarm Classification
منابع مشابه
Efficient colour image segmentation using exponential particle swarm optimization
Image colour classification and Image segmentation using comprehensive learning particle swarm optimization (CLPSO) technique was developed by Parag Puranik, Dr. P.R. Baja, Prof. P.M. Palsodkar [1], the aim was to produce a fuzzy system for colour classification and image segmentation with least number of rules and minimum error rate. In this paper we propose exponential particle swarm optimiza...
متن کاملBidirectional teaching and peer-learning particle swarm optimization
Most of the well-established particle swarm optimization (PSO) variants do not provide alternative learning strategies when particles fail to improve their fitness during the searching process. To solve this issue, we improved the state-of-art teaching–learningbased optimization algorithm and adapted the enhanced framework into the PSO. Thus, we developed a bidirectional teaching and peer-learn...
متن کاملHybrid particle swarm algorithm for solving nonlinear constraint optimization problems
Based on the combination of the particle swarm algorithm and multiplier penalty function method for the constraint conditions, this paper proposes an improved hybrid particle swarm optimization algorithm which is used to solve nonlinear constraint optimization problems. The algorithm converts nonlinear constraint function into no-constraints nonlinear problems by constructing the multiplier pen...
متن کاملAn Improved Binary Particle Swarm Optimization with Complementary Distribution Strategy for Feature Selection
Feature selection is a preprocessing technique with great importance in the fields of data analysis, information retrieval processing, pattern classification, and data mining applications. It process constitutes a commonly encountered problem of global combinatorial optimization. This process reduces the number of features by removing irrelevant, noisy, and redundant data, thus resulting in acc...
متن کاملAn Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization
An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJSSCI
دوره 6 شماره
صفحات -
تاریخ انتشار 2014